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Abstract 

An important emerging issue in climate research is the degree to which a Sea Surface 

Temperature (SST) change in one tropical ocean basin affects the SST in other basins. In this 

study the SST interactions among 8 broadly defined regions of coherent SST variability in the 

tropical Pacific, Indian, and Atlantic oceans are estimated using 3 observational and 76 climate 

model simulation datasets of the 20th century. The 8-dimensional SST feedback matrix is 

estimated separately using each dataset by constructing a Linear Inverse Model based on the lag-

covariance statistics of the 100-yr monthly SST time series. The simulated feedback matrices are 

found to differ in several key respects from the observed matrices, and also from one another. In 

particular, the influence of the eastern Pacific ENSO region on other regions, and of the other 

regions on the ENSO region, is found to vary considerably from model to model. The 

representation of remote interactions with the Indo-Pacific Warm Pool region is also found to be 
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highly variable. It is argued that these large errors/differences arise mainly from differences in 

the representation of the remote atmospheric teleconnective feedbacks, and to a lesser extent the 

local radiative-thermodynamic feedbacks, on the SSTs in the models, whereas differences in the 

representation of the tropical oceanic wave dynamics are likely less important.  

 

 

1. Background 

Most climate models remain deficient at representing important atmospheric and oceanic aspects 

of the tropical climate. For example, the simulated atmospheric intertropical convergence zone 

(ITCZ) varies considerably from model to model, with many models generating an unrealistic 

“double ITCZ” structure, and in many oceanic simulations a 1-2 K mean SST bias is found over 

large areas [e.g. Lin 2007]. The ultimate origin of such biases remains a mystery. At least in part, 

this is because it is still unclear how a change and/or error in one part of the system affects a 

change and/or error in another part, and what overall effect this has on the simulation and 

prediction of tropical climate variations. 

 

In this study, we attempt to address the first part of this question. We are especially interested in 

how the SST variations in the Indian, Pacific, and Atlantic ocean basins are interlinked. 

Although these basins are separated from each other by the American and African land masses 

and the Maritime Continent, their interactions with each other, which occur predominantly 

through the atmosphere on time scales of a few months, can nevertheless be substantial. For 

example, it is well recognized that El Niño related SST variations in the eastern equatorial 

Pacific influence climate variability over the adjacent oceans [e.g. Enfield and Mayer 1997; 
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Penland and Matrosova 1998; Klein et al. 1999; Alexander et al. 2002; Giannini et al. 2004]. 

Conversely, the relatively weak SST variability in the Indian and Atlantic basins also modifies 

ENSO variability in the Pacific basin [Yu et al. 2002; Annamalai et al. 2005; Kug and Kang 

2006; Kug et al. 2006; Dommenget et al. 2006; Yeh et al. 2007]. The question naturally arises, 

how accurately do current coupled climate models capture such interactions among these ocean 

basins? 

 

We are also interested here in the dominant interactions within each of these basins, especially 

between the eastern and western and off-equatorial and equatorial Pacific, between the northern 

and southern tropical Atlantic, and between the western and eastern Indian oceans. We suspect -- 

and confirm below -- that these interactions are also not well represented in climate models, 

partly because (with the possible exception of east-west interactions in the equatorial Pacific) 

they are not dominated by well-understood oceanic wave dynamics. Even within the equatorial 

Pacific zone, there are questions concerning how well climate models capture the east-west SST 

interactions associated with fluctuations of the atmospheric Walker circulation, which are an 

integral part of the ENSO phenomenon. 

 

Guided by EOF analyses of observed monthly SST variations in each basin (see Figs 1a and 1b), 

we selected a total of 8 geographically localized regions in the tropics (30S-30N) among which 

to investigate the SST interactions (Fig. 1c). We focused on the effectively linear feedbacks 

among these regions, encapsulated in an 88 deterministic system feedback matrix L , by 

constructing and intercomparing the L  matrices obtained from Linear Inverse Modeling [LIM; 

see e.g. Penland and Sardeshmukh 1995; Newman et al. 2009] of both observed and simulated 
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monthly tropical SST variations over the 20th century (1900-1999). We constructed three 

observationally based L  matrices using SST datasets compiled at the Hadley Centre of the UK 

Met Office [HadISST; Rayner et al. 2003], the Lamont-Doherty Earth Observatory [Kaplan et al. 

1998], and the National Oceanic and Atmospheric Administration [NOAA; Smith and Raynolds 

2005]. We then compared these matrices with 76 L  matrices derived from 76 coupled model 

simulations of the 20th century, available at the Program for Climate Model Diagnosis and 

Intercomparison (PCMDI; http://www-pcmdi.llnl.org). These simulations were generated using 

prescribed observed time-varying radiative forcings associated with greenhouse gases, aerosols, 

and solar variations as part of the Climate of the Twentieth Century project (20C3M), as a 

contribution to the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate 

Change [IPCC 2007]. More details of the simulation and observational datasets used here may be 

found in the recent paper by Shin and Sardeshmukh (2010), who used identical datasets in their 

study. 

 

 

2. Diagnosis method 

Our multivariate diagnosis of tropical SST interactions rests on approximating the evolution of 

tropical variations on longer than weekly time scales by a linear stochastically forced model of 

the form, 

 

                                  
d

dt

x   x FL B , (1) 

 

http://www-pcmdi.llnl.org/
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where  is the N-component system state vector with N=8 components representing the 

spatially averaged monthly-mean SST anomalies in our 8 regions, all predictable dynamical 

interactions among the system components are represented in the NN deterministic linear 

feedback matrix L  (sometimes also called the system sensitivity matrix or the matrix of time 

scales), and all unpredictable chaotic nonlinear dynamics are approximated by the stochastic 

forcing 

 tx

B , where   is an M-component noise vector of independent white noises and B  is a 

constant NM matrix. Note that the expected mean B  of this stochastic forcing is zero. The 

N-component vector  represents external forcing of the system. F

 

It is important to recognize that although (1) is formulated using only SST, it implicitly includes 

influences of other climate variables such as winds and ocean currents on SST, and also 

nonlinear effects, in approximate form. Specifically, deterministic interactions with other 

variables are implicitly included in L  to the extent that those variables can be linearly diagnosed 

from the monthly SST anomaly state vector. As for nonlinear effects, the basic premise in (1) 

concerning the evolution of monthly SST anomalies is that the nonlinear SST tendency terms 

associated with submonthly SST anomalies and fluxes are in principle linearly parameterizable 

in terms of the monthly SSTs, and the unparameterized remainder can be treated as stochastic 

white noise. With these approximations in mind, it is apparent that L in (1) is not that obtained 

by directly linearizing the governing fluid dynamical equations but also includes such linear 

interactions with other variables and linear parameterizations of unresolved processes, and B  

accounts for the amplitude and spatial correlation structure of the unparameterized remainder as 

a “stochastic parameterization”. We interpret L  as an effectively linear feedback matrix 

governing monthly SST variations in the tropics. Each of its elements  quantifies the direct ijL
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dynamical influence (in a dynamical systems sense) of the SST jx  in region j on the SST ix  in 

region i, as distinct from additional indirect influences of region j on region i via other regions k. 

Note that in general . Note also that because the system is multivariate, the  are not 

simply identical to the regression coefficients of 

  ij jiL L ijL

ix  on jx . 

 

As discussed in detail by Sardeshmukh and Sura [2009], the relevance of the linear, 

stochastically forced, approximation (1) in climate system dynamics may be justified using 

several lines of evidence. First, many coupled climate models are found to respond 

approximately linearly to imposed GHG and other external radiative forcing changes on decadal 

and longer timescales [e.g., Meehl et al. 2004; Cash et al. 2005; Knutson et al. 2006 and 

references therein], consistent with a linear ensemble-mean response 1 x L F  that one would 

predict using (1). Second, on shorter interannual scales on which the changes of  are relatively 

small, the SST dynamics are consistent with those of a stochastically forced linear system both in 

the tropics [Penland and Sardeshmukh 1995; Newman et al. 2009] and the extratropics 

[Hasselmann 1976; Frankignoul 1985; Barsugli and Battisti 1998; Alexander et al. 2008]. 

Several studies have also shown that the predictable global atmospheric dynamics on these time 

scales are dominated by linear global responses to tropical SST variations [e.g. Barsugli and 

Sardeshmukh 2002; Schneider et al. 2003; Barsugli et al. 2006]. Indeed, on these time scales it is 

difficult to improve upon predictions based on empirical linear correlations, using even state-of-

the-art nonlinear dynamical coupled models [e.g. Saha et al. 2006]. The forecast skill of the 

correlation based models remains competitive with that of comprehensive NWP models even on 

subseasonal time scales [Winkler et al. 2001; Newman et al. 2003]. 

F
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Penland and Sardeshmukh [1995, henceforth PS95] and Newman et al. [2009] demonstrated the 

validity of (1) in tropical SST dynamics through extensive diagnostic and forecasting tests.  

Their demonstration, conducted in an EOF space, retains its validity in the grid space of interest 

here because of an attractive property of (1) that it is isomorphic with respect to linear 

transformations of the state vector x . In other words, if x  evolves according to (1), then a 

linearly transformed vector y xU  also evolves according to (1), in which L  is replaced by 

, B  is replaced by UB , and F  is replaced by . If U  represents a transformation from 

grid space to EOF space, then (1) transforms into equations similar to those used and thoroughly 

tested by PS95 and Newman et al. [2009]. The mapping is not quite 1-to-1 because of the 

different coarse graining (i.e. truncation) employed in the two representations of (1). 

Nevertheless, their extensive demonstration of the validity of (1) in tropical SST dynamics is 

highly relevant in our context. We provide further evidence below that (1) is a good enough 

approximation for the evolution of monthly SST anomalies on our coarse-grained spatial grid 

that L  provides useful information on both local and remote SST feedbacks in the tropics. 

-1ULU FU

 

We used the LIM formalism of PS95 to estimate L  from 3 observational and 76 coupled climate 

model simulation datasets of the 20th century. The details of LIM may be found in PS95 and are 

not repeated here. Briefly, L  can be estimated using the lag-covariance equation 

 satisfied by all dynamical systems of the form (1) with , where       = exp  0 C L

    

C 0F

 ij i jC x t x   t  are the elements of the lag covariance matrix  C  at time lag  , by 

specifying  and  0C  0C  at some lag 0 . One can repeat this exercise using other training 

lags 0 ; if the system is indeed of the form (1), then one should obtain the same L . This is the 
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so-called "Tau test" of PS95 for the validity of linear stochastically forced dynamics. Note that 

even though L  is estimated using covariances at relatively short lags 0  (several months in our 

case) over which changes of F  are presumed to be negligible, this same L  can then be used to 

determine the system's response as 1 x F FL  to  on long time scales. 

 

As mentioned above, our use of LIM here is distinct from that in previous LIM studies [e.g., 

PS95; Penland and Matrosova 1998; Winkler et al. 2001; Newman et al. 2003; Penland and 

Matrosova 2006; Alexander et al. 2008; Newman et al. 2009], in which the emphasis was mainly 

on prediction and predictability, and L  was estimated using observations projected onto a 

truncated EOF space. Here, our emphasis is on intercomparing the L  matrices estimated from 

observations and coupled climate model simulations in grid space, and to isolate inadequately 

modeled interactions among specific geographical regions. Such a diagnosis is harder to interpret 

when performed in a truncated EOF basis, mainly because the dominant EOFs of detrended 

tropical climate variations are not geographically localized structures and therefore account for 

different fractions of the SST variance at different locations. Note that we retain all of the 

variance of the detrended area-averaged monthly SST anomalies in each of our 8 regions. The 

SST anomalies in those regions, obtained after removing the grand mean, mean annual cycle, 

and linear trend from the 100-yr monthly SST time series, define our 8-component state vector 

 in (1).  tx

 

Despite the seemingly drastic approximations made in (1), estimates of L  from both the 

observational and simulation SST datasets pass the "Tau test" remarkably well, as shown in Fig. 

2. To generate the figure, we estimated L  from each dataset using training lags 0  ranging from 
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1 to at least 5 months. (As explained in PS95, a technical difficulty with LIM is that it fails to 

estimate , even if (1) is valid, if L 0  exceeds the half-period corresponding to the highest 

eigenfrequency of L , i.e. beyond the Nyquist lag). The near-independence of L  on 0  may be 

gauged in Fig. 2 by the nearly constant magnitude of L  times a “representative” constant vector 

  (whose 8 components are proportional to the SST standard deviations in the 8 regions) as 0 is 

varied. The thick black and thin gray curves show the results for L  obtained using the 

observational and simulation datasets, respectively. It is reassuring that both sets of curves are 

approximately flat, especially for 0  between 1 and 5 months, attesting to the validity of (1). We 

therefore used throughout this study the average L  matrices obtained for 0  ranging from 1 and 

5 months. Note, however, that although the observational and model curves in Fig. 2 are 

approximately flat in this range, the model curves are vertically offset with respect to not only 

the observational but also other model curves, and also generally terminate at different values of 

0 . These results suggest that the SST feedbacks are indeed effectively linear in both the 

observations and the models, but the simulated L  matrices differ substantially from the 

observational matrices and also from one another. These errors and differences are explored in 

greater detail in the next section. 

 

Before concluding this section, we note that although satisfaction of the “Tau test” is sufficient 

for establishing the validity of  (1), it does not address the question of the relative magnitudes of 

 and  xL B  in (1), that are closely related to the relative magnitudes of the forecast signal 

 and forecast error   tLexp x   in the forecast equation    t texp     x xL  obtained 

by integrating (1) (with ) from time t  to 0F t   . This issue is not directly relevant here, and 
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as already mentioned, has been investigated in detail in previous LIM studies. Still, one may 

wonder if our “coarse-graining” of tropical SST variability to 8 degrees of freedom, which is 

more severe than in the previous LIM studies, significantly distorts some essential aspects of the 

deterministic (i.e. predictable) tropical SST dynamics, including ENSO dynamics, represented in 

. Although a detailed predictability analysis is beyond the scope of this study, Fig. 3 provides 

important reassurance in this regard. It shows the monthly SST forecast anomaly correlation 

skill, i.e. the correlation of 

xL

   exp t xL  and  t x  in each of the i = 1,2,3,..,8 regions for 

  = 3, 6, and 9 months over the full 100-yr record, estimated as the square root of 

       Texp 0 exp
ii

  L C L 0
ii

    C . In essence, this is the ratio of the SST forecast signal 

standard deviation to the full SST standard deviation. These estimated forecast anomaly 

correlations are very comparable to those reported in the previous LIM studies of PS95, Newman 

et al. [2009], and Compo and Sardeshmukh [2010]. In particular, the skill in the ENSO region is 

just as high as in those studies. 

 

 

3. Observed and simulated feedback matrices 

Equation (1) may be cast in a standardized form by normalizing each component of x  by its 

standard deviation. The L  matrix then transforms into  1L sLs , where s  is a diagonal matrix 

of the reciprocals of the SST standard deviations. Note that each element  ijL  of  has units of 

inverse time (month-1 in our case), and thus identifies a characteristic time scale for the influence 

of an SST anomaly in region j on the anomaly in region i. 

L
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Before performing detailed intercomparisons of the  matrices estimated from the 20th century 

observations and model simulations, we present in Fig. 4 the  matrices estimated using the 

detrended monthly SST anomaly fields for all of the 20th century, and for just the first and 

second halves of the century, from the three observational SST datasets (HadISST, Kaplan, and 

NOAA). We do this not only to provide observational targets for the  matrices derived from 

the 20th century model simulations, but also to gain a sense of the “fuzziness” in those targets 

associated with dataset dependence and sampling uncertainty. It should be noted, however, that 

the differences between the  matrices derived from the data for the first and second halves of 

the 20th century are indicative not only of sampling uncertainty; they also include a contribution 

from real 20th century climate change. Given also that the sampling uncertainty in the 100-yr  

estimates is smaller than in the 50-yr estimates, we interpret the differences between the first and 

second 50-yr  estimates as providing rough upper bounds on the sampling uncertainty in the 

100-yr  estimates, which we used in all our comparisons with the  estimates from the 100-yr 

model simulations. 

L

L

L

L

L

L

L L

 

Despite the above caveats, there is a reassuring consistency among the 9 observational estimates 

of each element  ijL  of  in Fig. 4, except for the estimate based on the first half-century 

HadISST data, which is an outlier in many instances. Not surprisingly, the consistency among 

the three datasets tends to be high for 

L


ijL  estimated from the data-rich second half-century 

record, and low for  ijL  estimated from the data-poor first half-century record. Fortunately, the 

100-yr  ijL  estimates are much more consistent among the 3 datasets than the first half-century 

estimates, and in most cases they are nearly as consistent as the second-half century estimates. 
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Figure 5 provides a detailed intercomparison of the observed and simulated 100-yr  matrices. 

At each (i,j) location on the plot, the gray horizontal line segments show estimates of 

L


ijL from the 

76 individual model simulations. The range of the corresponding 3 observational  ijL  estimates is 

indicated by the width of the red rectangle below the horizontal axis. The multi-model ensemble 

mean of  ijL  is also shown below the horizontal axis as a filled blue circle, together with two 

different measures of simulated uncertainty: the multi-model ensemble spread of  ijL  ( ALL  ; 

outer blue bars), and the average of the “internal” ensemble spread obtained for specific models 

with at least 3 ensemble members1  ( INT  ; shorter inner blue bars). In essence, INT  is a 

measure of the consistency of  ijL  estimated using different simulations of the same model. The 

fact that INT  is generally much smaller than ALL  in Fig. 5 suggests that most of the multi-

model spread of the  ijL  estimates arises from actual model differences, rather than sampling 

error. 

 

Figure 5 shows that to a first approximation, monthly SST anomalies throughout the tropics are 

strongly damped by local interactions within the air-sea column, as indicated by the 

predominantly negative values of the diagonal elements  iiL  of  in both observations and 

models. (Note that the scale for the diagonal elements in the figure is twice that for the off-

diagonal elements). This local damping time scale is relatively short (~ 4 months) in the Indian 

and Western Pacific (Regions 1-3), somewhat longer (~ 6 months) in the Atlantic  (Regions 7-8), 

L

                                                 
1 In clustering the coupled models, different versions of a model (including different resolution versions) from the 
same modeling group were treated separately. We determined a total of 14 such distinct model clusters. They are 
indicated by the right-handed brackets at the far right edge of the plot. 
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and relatively long (6 to 9 months) in the eastern Pacific (Regions 4-6) basins.  It is longest in the 

Cold Tongue "ENSO" region of the eastern equatorial Pacific (Region 5). The multi-model 

ensemble mean values of  iiL  are generally in reasonable agreement with the observed values, 

although there is considerable inter-model spread that is largest (relative to the ensemble-mean 

value) in the ENSO Region 5. The positive bias of the models'  55L  with respect to the observed 

(indicative of weaker than observed local damping) is also relatively the largest. A similar weak 

local damping bias was implicated by Sun et al. [2006] in the excessive coldness of the long-

term mean SSTs in this region in a smaller group of coupled model simulations. Apparently the 

spuriously weak damping of SSTs in the ENSO region remains a prevalent problem. 

 

Given the importance of ENSO, the remote influence on the ENSO region from other regions 

(  5 jL ), as well as the influence of the ENSO region on the other regions ( ) are of particular 

interest. These interactions are highlighted by the green and yellow colored 5th row and 5th 

column, respectively, of 


5iL

L  in Fig. 5. Significant model misrepresentations of the remote impacts 

on the ENSO region (  5 jL ) are evident, consistent with the suggestion from previous studies that 

simulation errors outside the Pacific basin also contribute substantially to errors in ENSO 

simulations [e.g. Guilyardi et al. 2009]. For instance, the damping impact of Indian Ocean SSTs 

on ENSO suggested in many studies [e.g. Annamalai et al. 2005; Kug and Kang 2006; Kug et al. 

2006; Dommenget et al. 2006; Yeh et al. 2007] is clear in both our observational and model 

based  5 jL  estimates; however, the exact locations of the influential regions are different. 

Whereas the models are in unanimous agreement that the damping influence is exerted from the 

entire Indian ocean basin, the observations show a strong damping influence only from the 
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eastern half of the basin (see also  and  in Fig. 4). The models also misrepresent the 

influence of the Atlantic SSTs on ENSO. The observations suggest a very weak influence, 

whereas the models suggest a substantial influence, but with little inter-model agreement even 

with regard to the sign of the North Atlantic influence ( ). And finally, Fig. 5 provides 

evidence that the influence of the northern off-equatorial SSTs on the equatorial SSTs in Region 

5 ( ) is systematically too strong in the models compared to observations. 


51L


85L


52L


57L


54L

 

Some aspects of the impact of SSTs in the ENSO region on other regions ( ) are also not well 

captured by the coupled models. For instance, the impacts on the eastern Indian ( ) and 

southern tropical Atlantic oceans ( ) are clearly outside the range of the observational 

estimates. Also, there is strong inter-model disagreement concerning even the sign of the impact 

on the Warm Pool SSTs ( , ). With regard to the impact on SSTs in the regions to the 

immediate north and south of the ENSO region, the models suggest a large positive impact on 

both regions (


5iL


25L


25L 

35L


45 0L   and  65L 0 ), whereas the observations suggest a large impact only on 

southern region (  65L  0 ). 

 

Besides interactions with the ENSO region, Fig. 5 suggests significant model misrepresentations 

of the Indian ocean influences on the southern Atlantic basin  (  and ); the western Pacific 

influences on the Eastern Indian ( ), northeastern Pacific ( ), southeastern Pacific ( ) and 

southern Atlantic ( ) basins; the northeastern Pacific influence on the western Pacific ( ) 

basin; and the northern Atlantic influence on the western Indian ( ) and northeastern and 

L


43L

81


82L

17

L23


63L


83L 

34L

L
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southeastern Pacific (  and ) basins.  In several instances these influences are inconsistent 

even with regard to sign among the models. 


47L 

67L

 

 

4. Summary and discussion 

In this study we investigated the interactions among 8 broadly defined regions of coherent 

tropical SST variability in the Pacific, Indian, and Atlantic Ocean basins using 3 observational 

and 76 climate model simulation datasets of the 20th century. The 8-dimensional SST feedback 

matrix was estimated separately using each dataset by constructing a Linear Inverse Model based 

on the lag-covariance statistics of the 100-yr monthly SST time series. In general, we found the 

local feedbacks on SST in our 8 selected regions to be reasonably consistent among the 

observations and the coupled models, although relatively less so in the eastern equatorial ENSO 

region (Region 5). It was in the representation of the remote feedbacks that we found the models 

to differ most from the observations, and also from one another. In particular, we found the 

influence of the eastern Pacific ENSO region on other regions, and of the other regions on the 

ENSO region, to vary considerably from model to model. We also found the representation of 

remote interactions with the Indo-Pacific Warm Pool region to be highly variable. 

 

Figure 5 provides a comprehensive summary of the results from our local and remote feedback 

analysis. It depicts the realism or otherwise of coupled model representations of all possible 

interactions among our 8 selected regions of dominant tropical SST variability. Although our 

emphasis was on highlighting those interactions that are represented particularly poorly in the 

models, the figure gives an impression of large inter-model inconsistencies in the remote 
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feedbacks even in instances when the multi-model ensemble-mean feedback is in reasonable 

agreement with the observations. 

 

Given such model errors and inconsistencies in the feedback operator L , relying on any one 

particular climate model to generate realistic responses 1 x L F  to external forcing is clearly 

unjustified. Focusing on the multi-model ensemble mean response 1 x FL  is the usual 

suggested solution to this problem. However, we have provided evidence that even the multi-

model mean operator L  differs from the observed operator in several key respects. The 

conclusion seems inescapable that at the very least, some important elements of L  highlighted in 

this paper should agree better with the observations to increase our confidence in the ability of 

even an ensemble of models to generate reliable responses to external forcing. Reduction of 

interaction errors that are systematic across all the models in Fig. 5 would appear to be an 

obvious first area of focus. The fact that such interactions, especially among the basins separated 

by continental land masses, generally occur on time scales of a few months at most suggests that 

they occur primarily through the atmosphere and not through the oceans, which should help in 

error diagnosis and reduction. 

 

We end by noting to an encouraging aspect of isolating model errors at the level of the feedback 

operator L , as done here, as opposed to merely documenting long-term simulation errors to 

demonstrate the existence of model errors. This is that the model errors in L  should be 

manifested in errors of tropical SST forecasts made using the models even at short forecast 

ranges of, say, three months given the validity of (1) even at these short ranges as demonstrated 

in Figs. 2 and 3. This suggests that an extensive model improvement program involving very 
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large numbers of short experimental model integrations to diagnose and reduce the short-range 

SST forecast errors and, concurrently, the errors in L  might be fruitful. 
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Figure Legends 

Fig. 1 (a) The dominant regional EOFs of monthly SST anomalies in the tropical Indian, Pacific, 

and Atlantic Oceans obtained from separate EOF analyses and shown in the same map for ease                       

of presentation. The regional boundaries of the EOF analyses are indicated by thick black lines. 

The numbers along bottom indicate the fractional variance explained by the EOFs. (b) As in (a) 

but for the second most dominant EOFs. The SST data are from the 20th century (1900-1999) 

HadISST data set [Rayner et al. 2003]. The data were interpolated to a T42 Gaussian grid before 

performing the EOF analyses. The raw EOF patterns obtained were then spatially smoothed 

using a T21 spectral filter to emphasize the large-scale features. (c) Our 8 selected tropical 

regions of geographically coherent SST variability based upon the EOF analyses: Region 1: WTI 

(Western Tropical Indian), Region 2: ETI (Eastern Tropical Indian), Region 3: WTP (Western 

Tropical Pacific), Region 4: NSP (North Subtropical Pacific), Region 5: ENSO, Region 6: SSP 

(South Subtropical Pacific), Region 7: NTA (North Tropical Atlantic), and Region 8: STA 

(South Tropical Atlantic). 

 

Fig. 2 The dependence of the magnitude L  of the effective SST feedback matrix L  times a 

“representative” constant vector  , on the training lag 0  used for estimating L . Results are 

shown for L  estimated using 3 observational (thick black curves) and 76-coupled simulation 

(thin gray curves) datasets. Note that although the model results differ substantially from the 

tightly clustered observational results, the curves for both observations and models are 

approximately flat for 0  between 1 and 5 months (demarcated by light gray shading). 
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Fig. 3 The estimated correlation of predicted and observed area-averaged monthly tropical SST 

anomalies in the 8 tropical regions of interest, at forecast lead times of 3, 6, and 9 months. The 

correlation is estimated as the ratio of the standard deviations of the predicted and observed 

monthly SST anomalies over the 20th century (1900-1999). Results obtained using the HadISST 

(solid black bars), Kaplan (grey bars), and NOAA (white bars) SST datasets are shown 

separately. See text for more explanation.    

 

Fig. 4 The elements  ijL  of the standardized 88 effective linear SST feedback matrix  (units: 

month-1) estimated using detrended observed monthly SST anomaly fields for the full 20th 

century (red symbols), and also estimated using the SST fields for only the first 50 years (green 

symbols) and last 50 years (blue symbols) of the 100-yr period. For each matrix element (i,j) the 

sets of upper circles, middle triangles, and lower squares show the 

L


ijL  values (along the 

horizontal axis, i.e. as the distance from the vertical line segment) estimated using, respectively, 

the HadISST, Kaplan, and NOAA SST datasets. The results for the diagonal elements are 

highlighted within large grey shaded squares. Note that the scale for the diagonal elements is 

twice that for the off-diagonal elements, as indicated in the upper left corner of the plot. See text 

for further details. 

 

Fig. 5 Intercomparisons of the elements of the standardized 88 effective linear SST feedback 

matrix  (units: month-1) estimated using 3 observational and 76 climate model simulation 

datasets. Note that the scale for the diagonal elements in the figure is twice that for the off-

diagonal elements. For each matrix element (i,j), the gray bars show 

L


ijL  estimated using the 76 

individual simulations. The multi-model ensemble mean  ijL  is indicated by the blue dot below 
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the horizontal axis, along with the multi-model ensemble spread of  ijL  among all 76 simulations 

( ALL ; large outer blue bars), and the average of the internal ensemble spread of  ijL  obtained in 

14 subsets of the ensemble simulations, each containing at least 3 ensemble members, generated 

using distinct models ( INT  ; smaller inner blue bars). These 14 simulation subsets are indicated 

by the right-handed brackets at the far right edge of the plot. The range of the  ijL  values 

estimated using the 3 observational datasets is indicated by the width of the red rectangles below 

the horizontal axis.  ijL  is a measure of the direct influence of the standardized SST anomalies in 

region j on the standardized SST anomalies in region i (see Fig. 1 for locations). The influences 

on the equatorial eastern Pacific “ENSO” Region 5 from the other regions (  5 jL ), and the 

influences of the ENSO region on the other regions ( ), are highlighted by the green colored 

5th row and yellow colored 5th column, respectively, of . See text for further details. 


5iL

L












	2010jd013927.pdf
	Realism of Local and Remote Feedbacks on Tropical Sea Surface Temperatures in Climate Models

	2010jd013927-p01
	2010jd013927-f02
	2010jd013927-f03
	2010jd013927-p04
	2010jd013927-p05

